
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=imte20

Medical Teacher

ISSN: 0142-159X (Print) 1466-187X (Online) Journal homepage: https://www.tandfonline.com/loi/imte20

Post-examination interpretation of objective test
data: Monitoring and improving the quality of
high-stakes examinations: AMEE Guide No. 66

Mohsen Tavakol & Reg Dennick

To cite this article: Mohsen Tavakol & Reg Dennick (2012) Post-examination interpretation of
objective test data: Monitoring and improving the quality of high-stakes examinations: AMEE Guide
No. 66, Medical Teacher, 34:3, e161-e175, DOI: 10.3109/0142159X.2012.651178

To link to this article:  https://doi.org/10.3109/0142159X.2012.651178

Published online: 25 Feb 2012.

Submit your article to this journal 

Article views: 5521

View related articles 

Citing articles: 10 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=imte20
https://www.tandfonline.com/loi/imte20
https://www.tandfonline.com/action/showCitFormats?doi=10.3109/0142159X.2012.651178
https://doi.org/10.3109/0142159X.2012.651178
https://www.tandfonline.com/action/authorSubmission?journalCode=imte20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=imte20&show=instructions
https://www.tandfonline.com/doi/mlt/10.3109/0142159X.2012.651178
https://www.tandfonline.com/doi/mlt/10.3109/0142159X.2012.651178
https://www.tandfonline.com/doi/citedby/10.3109/0142159X.2012.651178#tabModule
https://www.tandfonline.com/doi/citedby/10.3109/0142159X.2012.651178#tabModule


2012; 34: e161–e175

WEB PAPER
AMEE GUIDE

Post-examination interpretation of
objective test data: Monitoring and improving
the quality of high-stakes examinations:
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MOHSEN TAVAKOL & REG DENNICK

University of Nottingham, UK

Abstract

The purpose of this Guide is to provide both logical and empirical evidence for medical teachers to improve their objective tests by

appropriate interpretation of post-examination analysis. This requires a description and explanation of some basic statistical and

psychometric concepts derived from both Classical Test Theory (CTT) and Item Response Theory (IRT) such as: descriptive

statistics, explanatory and confirmatory factor analysis, Generalisability Theory and Rasch modelling. CTT is concerned with the

overall reliability of a test whereas IRT can be used to identify the behaviour of individual test items and how they interact with

individual student abilities. We have provided the reader with practical examples clarifying the use of these frameworks in test

development and for research purposes.

Introduction

The output of the examination process is transferred to

students either formatively, in the form of feedback, or

summatively, as a formal judgement on performance.

Clearly, to produce an output which fulfils the needs of

students and the public, it is necessary to define, monitor and

control the inputs to the process. Classical Test Theory (CTT)

assumes that inputs to post-examination analysis contain

sources of measurement error that can influence the student’s

observed scores of knowledge and competencies. Sources of

measurement error is derived from test construction, admin-

istration, scoring and interpretation of performance. For

example; quality variation among knowledge-based questions,

differences between raters, differences between candidates

and variation between standardised patients (SPs) within an

Objective Structured Clinical Examination (OSCE).

To improve the quality of high-stakes examinations, errors

should be minimised and, if possible, eliminated. CTT assumes

that minimising or eliminating sources of measurement errors

will cause the observed score to approach the true score.

Reliability is the key estimate showing the amount of

measurement error in a test. A simple interpretation is that

reliability is the correlation of the test with itself; squaring this

correlation, multiplying it by 100 and subtracting from 100

gives the percentage error in the test. For example, if an

examination has a reliability of 0.80, there is 36% error variance

(random error) in the scores. As the estimate of reliability

increases, the fraction of a test score that is attributable to error

will decrease. Conversely, if the amount of error increases,

reliability estimates will decrease (Nunnally & Bernstein 1994).

Although some medical schools have adopted psychomet-

ric methods such as reliability testing and item analysis to

monitor and improve OSCE examination (Lawson 2006;

Iramaneerat et al. 2008), the use of advanced psychometric

methods such as generalisability theory and Rasch modelling

has yet to become widespread.

Therefore, the objective of this Guide is to illustrate the use

and interpretation of traditional and advanced psychometric

methods using several examples. Ultimately, readers are

encouraged to consider using these methods with their own

exam data. We have explained how to generate post-

examination data from objective tests using SPSS elsewhere

(Tavakol & Dennick 2011b), and therefore we will not discuss

these methods in this article. We shall begin with the

Practice points

. Health profession educators need to interpret test data

using psychometric methods.

. EFA describes how and to what extent a group of items

in a test are related to a set of latent constructs or factors.

CFA confirms the modelled relationship between the

assessed factors.

. Generalisability theory extends CTT allowing assessors

to isolate and estimate multiple errors that are influenc-

ing the results of a test.

. IRT, including Rasch modelling, produces a variety of

data displays, encapsulating both student and item

properties that enable test developers to monitor and

improve the quality of test questions.
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traditional interpretation of post-exam data from objective tests

and OSCEs and then look at the application of modern

psychometric methods. We will use simulated data to exem-

plify methods for improving subsequent examinations.

Interpretation of basic
post-examination results

Individual questions

A descriptive analysis is the first step in summarising and

presenting the raw data of an examination. A distribution

frequency for each question immediately shows up the

number of missing questions and the patterns of guessing

behaviour. For example, if there were no missing question

responses identified, this would suggest that students either

had good knowledge or were guessing for some questions.

Conversely, if there were missing question responses, this

might be either an indication of an inadequate time for

completing the examination, a particularly hard exam or

negative marking is being used (Stone & Yeh 2006; Reeve

et al. 2007).

The means and variances of test questions can provide us

with important information about each question. The mean of

a dichotomous question, scored either 0 or 1, is equal to the

proportion of students who answer correctly, denoted by p.

The variance of a dichotomous question is calculated from the

proportion of students who answer a question correctly (p)

multiplied by those who answer the question incorrectly (q).

To obtain the standard deviation (SD), we merely take the

square root of p� q. For example, if in an objective test, 300

students answered Question 1 correctly and 100 students

answered it incorrectly, the p value for Question 1 will be

equal to 0.75 (300/400), and the variance and SD will be 0.18

(0.75� 0.25) and 0.42 (
ffiffiffiffiffiffiffiffiffiffi
0:18
p

) respectively. The SD is useful

as a measure of variation or dispersion within a given question.

A low SD indicates that the question is either too easy or too

hard. For example, in the above example, the SD is low

indicating that the item is too easy. Given the item difficulty of

Question 1 (0.75) and a low item SD, one can conclude that

responses to item was not dispersed (there is little variability

on the question) as most students paid attention to the correct

response. If the question had a high variability with a mean at

the centre of distribution, the question might be useful.

Total performance

After obtaining the mean and SD for each question, the test can

be subjected to conventional performance analysis where the

sum of correct responses of each student for each item is

obtained and then the mean and SD of the total performance

are calculated. Creating a histogram using SPSS allows us to

understand the distribution of marks on a given test. Students’

marks can take either a normal distribution or may be skewed

to the left or right or distributed in a rectangular shape.

Figure 1(a) illustrates a positively skewed distribution. This

simply shows that most students have a low-to-moderate mark

and a few students received a relatively high mark in the tail.

Positive Skew

Mode
Median

Mean

Negative Skew

Mean

Median

Mode

(a)  (b)

Mean

Normal Distribution

(c)

Figure 1. Some shapes of distributions.
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In a positively skewed distribution, the mode and the median

are greater than the mean indicating that the questions were

hard for most students. Figure 1(b) shows a negatively skewed

distribution of students’ marks. This shows that most students

have a moderate-to-high mark and a few students received

relatively a low mark in the tail. In a negatively skewed

distribution, the mode and the median are less than the mean

indicating that the questions were easy for most students.

Figure 1(c) shows most marks distributed in the centre of a

symmetrical distribution curve. This means that half the

students scored greater than the mean and half less than

mean. The mean, mode and median are identical in this

situation. Based on this information, it is hard to judge whether

the exam is hard or easy unless we obtain differences between

the mode, median or mean plus an estimate of the SD. We

have explained how to compute these statistics using SPSS

elsewhere (Tavakol & Dennick 2011b; Tavakol & Dennick

2012).

As an example, we would ask you to consider the two

distributions in Figure 2, which represent simulated marks of

students in two examinations.

Both the mark distributions have a mean of 50, but show a

different pattern. Examination A has a wide range of marks,

with some below 20 and some above 90. Examination B, on

the other hand, shows few students at either extreme. Using

this information, we can say that Examination A is more

heterogeneous than Examination B and that Examination B is

more homogenous than Examination A.

In order to better interpret the exam data, we need to

obtain the SD for each distribution. For example, if the mean

marks for the two examinations are 67.0, with different SDs of

6.0 and 3.0, respectively, we can say that the examination with

a SD of 3.0 is more homogenous and hence more consistent in

measuring performance than the examination with a SD of 6.0.

A further interpretation of the value of the SD is how much it

shows students’ marks deviating from the mean. This simply

indicates the degree of error when we use a mean to explain

the total student marks. The SD also can be used for

interpreting the relative position of individual students in a

normal distribution. We have explained and interpreted it

elsewhere (Tavakol & Dennick 2011a).

Interpretation of classical item
analysis

In scientific disciplines, it is often possible to measure variables

with a great deal of accuracy and objectivity but when

measuring student performance on a given test due to a wide

variety of confounding factors and errors, this accuracy and

objectivity becomes more difficult to obtain. For instance, if a

test is administrated to a student, he or she will obtain a variety

of scores on different occasions, due to measurement errors

affecting his or her score. Under CTT, the student’s score on a

given test is a function of the student’s true score plus random

errors (Alagumalai & Curtis 2010), which can fluctuate from

time to time. Due to the presence of random errors influencing

examinations, we are unable to exactly determine a student’s

true score unless they take the exam an infinite number of

times. Computing the mean score in all exams would eliminate

random errors resulting in the student’s score eventually

equalling the true score. However, it is practically impossible

to take a test an infinite number of times. Instead we ask an

infinite number of students (in reality a large cohort!) to take

the test once allowing us to estimate a generalised standard

error of measurement (SME) from all the students’ scores. The

SME allows us to estimate the true score of each student which

has been discussed elsewhere (Tavakol & Dennick 2011b).

Reliability

It is worth reiterating here that just as the observed score is

composed of the sum of the true score and the error score, the

variance of the observed score in an examination is made up

of the sum of the variances of the true score and the error

score, which can be formulated as follows:

Variance Observed scoreð Þ

¼ Variance True scoreð Þ þ Variance Errorsð Þ ð1Þ

Now imagine a test has been administered to the same

cohort several times. If there is a discrepancy between the

variance of the observed scores for each individual, on each

test, the reliability of the test will be low. The test reliability is

Scores

Examination A

50 70 903010
Scores

Examination B

50 70 903010

Figure 2. Two different distributions from two examinations.
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defined as the ratio of the variance of the true score to the

variance of the observed score:

Reliability ¼
Variance ðTrue scoreÞ

Variance ðObserved scoreÞ
ð2Þ

Given this, the greater the ratio of the true score variance to

the observed score variance, the more reliable the test. If we

substitute variance (true scores) from Equation (1) in Equation

(2), the reliability will be as follows:

Reliability ¼
Variance ðObserved scoreÞ � Vaiance ðErrorÞ

Variance ðObserved scoreÞ

ð3Þ

And then we can rearrange the reliability index as follows:

Reliability ¼ 1�
Vaiance ðErrorÞ

Variance ðObserved scoreÞ
ð4Þ

This equation simply shows the relationship between

source of measurement error and reliability. For example,

if a test has no random errors, the reliability index is 1, whereas

if the amount of error increases, the reliability estimate will

decrease.

Increasing the test reliability

The statistical procedures employed for estimating reliability

are Cronbach’s alpha and the Kuder–Richardson 20 formula

(KR-20). If the test reliability was less than 0.70, you may need

to consider removing questions with low item-total correlation.

For example, we have created a simulated SPSS output for four

questions in Tables 1 and 2.

Table 1 shows Cronbach’s alpha for four questions, 0.72.

Table 2 shows item-total correlation statistics with the column

headed ‘Cronbach’s Alpha if Item deleted’. (Item-total corre-

lation is the correlation between an individual question score

and the total score).

The fourth question in the test has a total-item correlation of

�0.51 implying that responses to this particular question have

a negative correlation with the total score. If we remove this

question from the test, the alpha of the three remaining

questions increase from 0.725 to 0.950, making the test

significantly more reliable.

Tables 3 and 4 show the output SPSS after removing

Question 4:

Tables 3 and 4 illustrate the impact of removing Question 4

from the test, which significantly increases the value of alpha.

However, if we now remove Question 2, the value of the

alpha for the test will be perfect, i.e. 1, which means each

question in the test must be measuring exactly the same thing.

This is not necessarily a good thing as it suggests that there is

redundancy in the test, with multiple questions measuring the

same construct. If this is the case, the test length could be

shortened without compromising the reliability (Nunnally &

Bernstein 1994). This is because the reliability is a function

of test length. The more the items, the more the reliability of

a test.

Although Cronbach’s alpha and KR-20 are useful for

estimating the reliability of a test, they conflate all sources of

measurement error into one value (Mushquash & O’Connor

2006). Recall that true scores equal observed scores plus

errors, which is derived from a variety of sources. The

influence of each source of error can be estimated by the

coefficient of generalisability, which is similar to a reliability

estimate in the true score model (Cohen & Swerdlik 2010).

Later we will describe how to identify and reduce sources of

measurement errors using generalisability theory or G-theory

as it is known. What is more, in our previous Guide (Tavakol &

Dennick 2012), we explained and interpreted item difficulty

level, item discrimination index and point bi-serial coefficient

in terms of CTT. In this Guide, we will explain and interpret

these concepts in terms of Item Response Theory (IRT) using

item characteristic parameters (item difficulty and item dis-

crimination) and the student ability/performance to all ques-

tions using the Rasch model.

Table 2. Item-total statistics.

Question

Scale mean
if item

deleted

Scale
variance
if item

deleted

Corrected
item-total
correlation

Cronbach’s
alpha if

item deleted

1 1.700 1.04 0.818 0.475

2 1.800 1.06 0.712 0.536

3 1.700 1.046 0.818 0.475

4 2.00 1.86 �0.051 0.950

Table 4. Item-total statistics (after removing Question 4).

Question

Scale
mean
if item

deleted

Scale
variance
if item

deleted

Corrected
item-total

corrections

Cronbach’s
alpha
if item

deleted

1 1.400 0.838 0.945 0.889

2 1.300 0.869 0.802 1.00

3 1.400 0.838 0.946 0.889

Table 1. Reliability statistics, simulated output from SPSS.

Cronbach’s
alpha

Cronbach’s alpha
based on

standardised items
Number
of items

0.725 0.724 4

Table 3. Reliability statistics, simulated output from SPSS (after
removing Question 4).

Cronbach’s
alpha

Number
of items

0.950 3
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Factor analysis

Linear factor analysis is widely used by test developers in order

to reduce the number of questions and to ensure that

important questions are included in the test. For example,

the course convenor of cardiology may ask all medical

teachers involved in teaching cardiology to provide 10

questions for the exam. This might generate 100 questions,

but all these questions are not testing the same set of concepts.

Therefore, identifying the pattern of correlations between the

questions allows us to discover related questions that are

aimed at the underlying factors of the exam. A factor is a

construct which represents the relationship between a set of

questions and will be generated if the questions are correlated

with the factor. In factor analysis language, this refers to factor

‘loadings’. After factor analysis is carried out, related questions

load onto factors which represent specific named constructs.

Questions with low loadings can therefore be removed or

revised.

If a test measures a single trait, only one factor with high

loadings will explain the observed question relationships and

hence the test is uni-dimensional. If multiple factors are

identified, then the test is considered to be multi-dimensional.

There are two main components to linear factor analysis:

exploratory and confirmatory. Exploratory Factor Analysis

(EFA) identifies the underlying constructs or factors within a

test and hypothesises a model relationship between them.

Confirmatory Factor Analysis (CFA) validates whether the

model fits the data using a new data set. Below, each method

is explained.

Exploratory factor analysis

EFA is widely used to identify the relationships between

questions and to discover the main factors in a test as

previously described. It can be used either for revising exam

questions or choosing questions for a specific knowledge

domain. For example, if in the cardiology exam we are

interested in testing the clinical manifestations of coronary

heart disease, we simply look for the questions which load on

to this domain. The following simulated example, using an

examination with 10 questions taken by 50 students, demon-

strates how to improve the questions in an examination. This

allows us to demonstrate how to revise and strengthen exam

questions and to calculate the loadings on the domain of

interest. As well as identifying the factors EFA also calculates

the ‘communality’ for each question. To understand the

concept of communality, it is necessary to explain the variance

(the variability in scores) within the EFA approach.

We have already learnt from descriptive statistics how to

calculate the variance of a variable. In the language of factor

analysis, the variance of each question consists of two parts.

One part can be shared with the other questions, called

‘common variance’; the rest may not be shared with other

questions, called ‘error’ or ‘random variance’. The communal-

ity for a question is the value of the variance accounted for by

the particular set of factors, ranging from 0 to 1.00. For

example, a question that has no random variance would have

a communality of 1.00; a question that has not shared its

variance with other questions would have a communality of

0.00. The communality shown for Question 9 (Table 5) is 0.85,

that is 85% of the variance in Question 9 is explained by factor

1 and factor 2, and 15% of the variance of Question 9 has

nothing in common with any other question. To compute the

shared variances for each question in SPSS, the following steps

are carried out in SPSS (SPSS 2009). From the menus, choose

‘Analyse’, ‘Dimension Reduction’ and ‘Factor’, respectively.

Then move all questions on to the ‘Variables’ box. Choose

‘Descriptive’ and then click ‘Initial Solution’ and ‘Coefficients’,

respectively. Then click ‘Rotation’. Choose ‘Varimax’ and click

on ‘Continue’ and then ‘OK’. In Table 5, we have combined

the simulated data of the SPSS output together.

Table 5 shows that two factors have emerged. Factor 1

demonstrates excellent loading with Questions 9, 2, 6, 10, 4, 1

and 3 and Factor 2 demonstrates excellent loading with

Questions 7 and 8, indicating these items have a strong

correlation with Factors 1 and 2. It should be noted that

loadings with values greater than 0.71 are considered excellent

(0.71� 0.71¼ 0.50� 100; i.e. 50% common variance between

the item and the factor, or 50% of the variation in the item can

be explained by the variation in the factor, or 50% of the

Table 5. Rotated two factors with communalities (h2).

Question 5 included After removing Question 5

Question Factor 1 Factor 2 h2 Factor 1 Factor 2 h2

9 0.92 �0.02 0.85 0.92 0.005 0.85

2 0.92 �0.02 0.85 0.92 0.005 0.85

6 0.81 0.21 0.71 0.80 0.24 0.71

10 0.79 �0.38 0.77 0.80 �0.36 0.77

4 0.79 �0.38 0.77 0.80 �0.36 0.77

1 0.73 0.36 0.69 0.72 0.38 0.68

3 0.69 0.16 0.50 0.69 0.18 0.51

5 �0.28 0.03 0.08

7 0.01 0.96 0.92 �0.0017 0.96 0.92

8 0.01 0.96 0.85 �0.0017 0.96 0.92

Percentage of

variance explained

by each factor

47.23 23.60 70.83 51.80 26.20 78.00
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variance is accounted for by the item and the factor),

0.63 (40% common variance) very good, 0.45 (20% common

variance) fair. Values less than 0.32 (10% common variance)

are considered poor and less contribute to the overall test and

they should be investigated (Comrey & Lee 1992; Tabachnick

& Fidell 2006). Table 5 also shows communalities for each

question in the column labelled h2. For example, 92% of the

variance in Question 2 is explained by the two factors that

have emerged from the EFA approach. The lowest commu-

nality is for Question 5, indicting 8% of the variance is

explained by this question. Low values of less than 30%

indicate that the variance of the question does not relate to

other questions loaded on to the identified factors. In Table 5,

Question 5 has the lowest communality figure and has not

loaded onto Factors 1 or 2, suggesting this question should be

revised or discarded.

Table 5 also shows the values of variance explained by the

two factors that have been identified from the EFA approach;

0.47 of the variance is accounted for by Factor 1 and 0.23 of

the variance is accounted for by Factor 2. Therefore, 0.70 of

the variance is accounted for by all of the questions. However,

if we delete Question 5, we can increase the total variance

accounted for to 0.78. A further interpretation of Table 5 is that

the vast majority of questions have been loaded on to Factor 1,

providing evidence of convergence and discrimination for the

construct validity of the test. We can argue that the test is

convergent as there are high loadings on to Factor 1. The test is

also discriminant as the questions that have loaded on to

Factor 1 have not loaded on to Factor 2. This means that Factor

2 measures another construct/concept which is discriminated

from Factor 1. Because two factors have been identified, it

would be appropriate to calculate Cronbach’s alpha

co-efficient for each factor because they are measuring two

different constructs. It should be noted that items which load

on more than two factors need to be investigated.

Confirmatory factor analysis

The technique of CFA has been widely used to validate

psychological tests but has been less used to evaluate and

improve the psychometric properties of exam questions. The

EFA approach can reveal how exam questions are correlated

or connected to an underlying domain of factors. For example,

an EFA approach may show that the internal structure of a 100

question test consist of three underlying domains, say physical

examination, clinical reasoning and communication skills. The

number of factors identified constitutes the components of a

hypothesised model, the factor structure model. In the above

example, the model would be termed a three-factor model.

The CFA approach uses the hypothesised model extracted

by EFA to confirm the latent (underlying) factors. However,

in order to confirm model fitting, a new data set must be used

to avoid a circular argument. For example, the same test could

be administered to a different but comparable group of

students.

Therefore, educators must first identify a model using EFA

and test it using CFA. This approach also allows educators to

revise exam questions and the factors underlying their

constructs (Floys & Widaman 1995). For example, suppose

EFA has revealed a two-factor model from an exam consisting

of history-taking and physical examination questions. The

researcher wishes to measure the psychometric characteristics

of the questions and test the overall fit of the model to improve

the validity and reliability of the exam. This can be achieved by

the use of structural equation modelling (SEM) which deter-

mines the goodness-of-fit of the newly input sample data to the

hypothesised model. The model fit is assessed using Chi-

square testing and other fit indices. In contrast to other

statistical hypothesis testing procedures, if the value of Chi-

square is not significant, the new data fit and the model is

confirmed. However, as the value of Chi-square is a function

of increasing or decreasing sample size, other fit indices

should also be investigated (Dimitrov 2010). These indices are

the comparative fit index (CFI) and the root mean square error

of approximation (RMSEA). A CFI value of greater than 0.90

shows a psychometrically acceptable fit to the exam data. The

value of RMSEA needs to be below 0.05 to show a good fit

(Tabachnick & Fidell 2006). A RMSEA of zero indicates that the

model fit is perfect. It should be noted that CFA can be run by a

number of popular statistical software programmes such as

SAS, LISREL, AMOS and Mplus. For the purpose of this article,

we choose AMOS (Analysis of Moment Structures) for its use of

ease. The AMOS software program can easily create models

and calculate the value of Chi-square as well as the fit indices.

In the above example, a test of 8 questions has two factors,

history-taking and physical examination and the variance of

these eight exam questions can be explained by these two

highly correlated factors. The test developer draws the two-

factor model (the path diagram) in AMOS to test the model

(Figure 3). Before estimating the parameters of the model,

click on the ‘view’ and click on ‘Analysis Properties’ and then

click on ‘Minimization history’, Standardised estimates,

‘Squared multiple Correlations’ and ‘Modification indices’. To

run the estimation, from the menu at the top, click on

‘Analyze’, then click on ‘Calculate Estimates’.

The output is given in Table 6. SEM calculates the slopes

and intercepts of calculated correlations between questions

and factors. From a CTT, the intercept is analogous to the item

difficulty index and the slope (standardised regression

weights/coefficients) is analogous to the discrimination index.

Table 6 shows that Question 1 in history-taking and

Question 3 in physical examination were easy

(intercept¼ 0.97) and hard (0.08), respectively. Table 6 also

shows that Question 4 in history-taking is not contributing to

overall history-taking score (slope¼�0.03). Further analysis

was conducted to assess degree of fit model to the exam data.

Focusing on Table 7, the absence of significance for the Chi-

square value (p¼ 0.49) implies support for the two- factor

model in the new sample. In reviewing values of both CFI and

RMSEA in Table 7, it is evident that the two-factor model

represents a best fit to the exam data for the new sample.

Further evidence for the relationship between the history-

taking and physical examination components of the test is

revealed by the calculation of a 0.70 correlation between the

two factors, supporting the hypothesised two-factor model. It

should be noted that AMOS will display the correlation

between factors/components by clicking the ‘view the

output diagram’ button. You can also view correlation
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estimates from ‘text output’. From the main menu, choose view

and then click on ‘text output’.

Generalisability theory analysis

We would ask you to recall that reliability is concerned with

the ability of a test to measure students’ knowledge and

competencies consistently. For example, if students are

re-examined with the same items and with the same conditions

on different occasions, the results should be more or less the

same. In CTT, the items and conditions may be the causes of

measurement errors associated with the obtained scores.

Reliability estimates, such as KR-20 or Cronbach’s alpha,

cannot identify the potential sources of measurement error

associated with these items and conditions (also known as

facets of the test) and cannot discriminate between each one.

However, an extension of CTT called Generalisability Theory

or G-theory, developed by Lee J. Cronbach and colleagues

(Cronbach et al. 1972), attempts to recognise, estimate and

isolate these facets allowing test constructors to gain a clearer

picture of sources of measurement error for interpreting the

true score. One single analysis of, for example, the results of

an OSCE examination, using G-theory can estimate all the

facets, potentially producing error in the test. Each facet of

measurement error has a value associated with it called its

variance component, calculated via an analysis of variance

(ANOVA) procedure, described below. These variance com-

ponents are next used to calculate a G-coefficient which is

equivalent to the reliability of the test and also enables one to

generalise students’ average score over all facets.

For example, imagine an OSCE has used SPs, a range of

examiners and various items to assess students’ performance

on 12 stations. SPs, examiners and items and their interactions

(e.g. interaction between SPs and items) are considered as

facets of the assessment. The score that the student obtains

from the OSCE will be affected by these facets of measurement

error and therefore the assessor should estimate the amount of

error caused by each facet. Furthermore, we examine students

using a test to make a final decision regarding their perfor-

mance on the test. To make this decision, we need to

generalise a test score for each student based on that score.

This indicates that assessors should ensure the credibility and

trustworthy of the score as means to making a good decision

(Raykov & Marcoulides 2011). Therefore, the composition of

errors associated with the observed (obtained) scores that

gained from a test need to be investigated. G-theory analysis

can then provide useful information for test constructors to

minimise identified sources of error (Brennan 2001). We will

now explain how to calculate the G-coefficient from variance

components.

G-coefficient calculation

To calculate the G-coefficient from variance components of

facets, test analysers traditionally use the ANOVA procedure.

ANOVA is a statistical procedure by which the total variance

present in a test is partitioned into two or more components

which are sources of measurement error. Using the calculated

History-
Taking

Physical 
Exam

Q1

Q2

Q3 

Q4

Q5

Q6

Q7 

Q8 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

1

1

1

1

1

1

1

1

1

1

Figure 3. The two-factor model.

Table 6. Simulated parameters revealed by the two-factor model.

Question type
Question
number Intercept

Slope:
history-taking

Slope:
physical

examination

History-taking 1 0.97 0.21 0.50

2 0.85 0.24 0.32

3 0.78 0.31 0.02

4 0.45 �0.03 0.26

Physical

examination

1 0.30 0.37 0.19

2 0.64 0.26 0.27

3 0.08 0.29 0.22

4 0.39 0.32 0.16

Table 7. Goodness-of-fit indices for the two-factor model.

Model �2 df p CFI RMSEA

Total sample 33.5 34 0.49 0.97 0.02
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mean square of each source of variation from the ANOVA

output (e.g. SPs, items, assessors, etc.), investigators determine

the variance components and then calculate the G-coefficient

from these values.

However, SPSS and other statistical packages like the

Statistical Analysis System (SAS) now allow us to calculate the

variance components directly from the test data. We will now

illustrate how to obtain the variance components from SPSS

directly for calculating the G-coefficient. The procedure used

varies according to the number of facets in the test. There are

single facet and multiple facet designs as described below.

Single facet design. A single facet design examines only a

single source of measurement error in a test although in reality

others may exist. For example, in an OSCE examination, we

might like to focus on the influence of examiners as sources of

error. In G-theory, this is called a one-facet ‘student (s)

crossed-with-examiner (e)’ design: (s� e). Consider an OSCE

in which three examiners independently rate a cohort of

clinical students on three different stations using a 1–5 check

list of 5 items. The total mark can therefore range from 5 to 25,

with higher mark suggesting a greater level of performance in

each station. Using G-theory, we can find out what amount of

measurement error is generated by the examiners. For

illustrative purpose, only 10 students and the three examiners

are presented in the Data Editor of SPSS in Figure 4.

Before analysing, the data needs to be restructured. To this

end, from the data menu at the top of the screen, one clicks on

‘restructure’ and follows the appropriate instructions. In

Figure 5, the restructured data format is presented.

To obtain the variance components, the following steps are

carried out:

From the menus chooses ‘Analyse’, ‘General Linear Model’,

respectively. Then click on ‘variance components’. Click on

‘Score’ and then click on the arrow to move ‘Score’ into the

box marked ‘dependent variable’. Click on student and

examiner to move them into ‘random factors’. After ‘variance

estimates’ appears, click OK and the contribution of each

source of variance to the result is presented as shown in

Table 8.

Table 8 shows that the estimated variance components

associated with student and examiner are 10.144 and 1.578,

respectively. Expressed as a percentage of the total variance, it

can be seen that 40.00 % is due to the students and 6.20 % to

the examiners. However, the variance of the students is not

considered a facet of measurement error as this variation is

expected within the student cohort and in terms of G-theory, it

is called the ‘object of measurement’ (Mushquash & O’Connor

2006). Importantly for our analysis, the findings indicate that

the examiners generated 6.20% of the total variability, which is

considered a reasonably low value. Higher values would

create concern about the effect of the examiners on the test.

The residual variance is the amount of variance not attributed

to any specific cause but is related to the interaction between

the different facets and the object of measurement of the test.

In this example, 13.656 or 53.80% of the variance is accounted

for by this factor.

On the basis of the findings of Table 8, we are now in a

position to calculate the generalisability coefficient. In this

case, the G-coefficient is defined as the ratio of the student

variance component (denoted �2
s ) to the sum of the student

variance component and the residual variance (denoted �2
error)

divided by the number of examiners (k) (Nunnally and

Bernstein 1994 ) and written as follows:

�2 ¼
�2

s

�2
s þ ð�

2
residual=kÞ

Figure 4. Hypothetical scoring of 10 students by three examiners on three different OSCE stations.
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Inserting the values from above, this gives:

�2 ¼
10:144

10:144þ ð13:656=3Þ
� 0:70

The G-coefficient, traditionally depicted as �2, is the

counterpart of the well-known reliability coefficient with

values ranging from 0 to 1.0. (It is worth noting that the

G-coefficient in the single facet design described above is

equal to Cronbach’s alpha coefficient (for non-dichotomous

data) and to Kuder–Richardson 20 (for dichotomous data). The

interpretation of the value of the G-coefficient is that it

represents the reliability of the test taking into account the

Figure 5. Restructured data from Figure 4.
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multiple sources of error calculated from their variance

components. The higher the value of the G-coefficient, the

more we can rely on (generalise) the students’ scores and the

less influence the study facets have been. In the above

example, the G-coefficient has a reasonably high value and the

variance component for examiners is low. This shows that the

examiners did not have significant variation in scoring students

and that we can have confidence in the students’ scores.

A multi-facet design. Clearly in an OSCE examination, there

are a number of other potential facets that need to be taken

into consideration in addition to the examiners. For example,

the number of stations, the number of SPs and the number of

items on the OSCE checklist. We will now explain how to

calculate the variance components and a G-coefficient for a

multi-facet design building on the previous example. Each of

three stations now has a SP and a 5-item checklist leading to an

overall score for each student. Here, examiners, stations, SPs

and items can affect the student performance and hence are

facets of measurement error.

However, because we are now interested in the influence

of the number items as a source of error, we need to input the

score for each item (i), for each student (s), for each station

(st), for each SP (sp) and for each examiner (e). After entering

exam data into SPSS and restructuring it, analysis of variance

components is carried out as described before. Table 9 shows

the hypothetical results of variance components for potential

sources of measurement error in the OCSE results.

Table 9 shows that 59.16 %, 16.37 % and 15.04 of the

sources of measurement error are generated by interactions

between student, item and examiner, interactions between

student and examiner and student, respectively. The lack of

residual variance between other combinations of facets

indicates that student scores cannot fluctuate owing to these

interactions and consequently they do not lead to any

measurement error. The value for the variance component

for examiners (0.06) in Table 9 differs from the value in Table 8

(1.57) because in creating the multi-facet matrix, we are using

individual item scores from students rather than their total

mark for all stations. These findings also indicate that there is

little disagreement about the actual scores given to student by

each examiner (2.88%). We can insert the values of the

variance components and the numbers associated with each

facet shown in Table 8 into the following equation:

�2 ¼
�2

s

�2
s þ ð�

2
s =kþ �

2
i =kþ �

2
es=kþ �

2
sp=kþ �

2
residual=kÞ

Zero values of variance components are not inserted, thus

excluding SPs and stations.

�2 ¼
0:313

0:313þ 0.060
�

3þ ð0:033=5Þ
� � ¼ 0:92

In this example, the G-coefficient is high and the variance

components of the facets are low, hence the reliability of the

OSCE is very good. If higher values of variance components

are found for particular facets, then they need to be examined

in more detail. This might lead to better training for examiners

or modifying items in checklists or the number of stations.

Given the high G-coefficient shown with these hypothetical

data, we could in principle reduce the values of k for

individual facets whilst maintaining a reasonably high value

of G and hence maintaining the reliability of the OSCE exam.

In the real world of OSCEs, this could lead to simplifications

and a reduction in the cost of OSCE examining. As for

Cronbach’s alpha statistic, there are different views concerning

acceptable values for G ranging from 0.7 to 0.95 (Tavakol and

Dennick 2011a, b). This ability to manipulate the generalisa-

bility equation in order to see how examination factors can

influence sources of measurement error and hence reliability

lies at the heart of decision study or D-study (Raykov &

Marcoulides 2011). Thus G-theory and D-study provide a

greater insight into the various processes occurring in exam-

inations, hidden by merely measuring Cronbach’s alpha

statistic. This enables assessors to improve the quality of

assessments in a much more specific and evidence-based way.

The IRT and Rasch modelling

Test constructors have traditionally quantified the reliability of

exam tests using the CTT model. For example, they use item

analysis (item difficulty and item discrimination), traditional

reliability coefficients (e.g. KR-20 or Cronbach’s alpha), item-

total correlations and factor analysis to examine the reliability

of tests. We have just shown how G-theory can be used

to make more elaborate analyses of examination conditions

with a view to monitoring and improving reliability.

CTT focuses on the test and its errors but says little about

how student ability interacts with the test and its items

Table 9. Results of variance components estimates.

Source of
variation (n)

Variance
component

s� e� i� sp� st
design

Percentage
of variance

Student (10) 0.313 15.04

Examiner (3) 0.060 2.88

Item (5) 0.033 1.59

SP (3) 0.000 0.00

Station (3) 0.000 0.00

Student� item 0.096 4.62

Student� examiner 0.341 16.37

Student� item� examiner 1.231 59.16

Item� examiner� station 0.007 0.34

Notes: Residual variances for interactions between facets equal to zero have

not been displayed in the table. They have no influence on the test and are

redundant.

Table 8. Results of variance components estimates.

Source of variation

Variance
component (s� e)

design
Percentage

variance

Student 10.144 40.00

Examiner 1.578 6.20

Student� examiner 13.656a 53.80

Note: aResidual variance.
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(Raykov & Marcoulides 2011). On the other hand, the aim of

IRT is to measure the relationship between the student’s ability

and the item’s difficulty level to improve the quality of

questions. Analyses of this type can also be used to build up

better question banks for Computer Adaptive Testing (CAT).

Consider a student taking an exam in anatomy. The

probability that the student can answer item 1 correctly is

affected by the student’s anatomy ability and the item’s

difficulty level. If the student has a high level of anatomical

knowledge, the probability that he/she will answer the item 1

correctly is high. If an item has a low index of difficulty (i.e. a

hard item), the probability that the student will answer the item

correctly is low. IRT attempts to analyse these relationships

using student test scores plus factors (parameters) such as item

difficulty, item discrimination, item fairness, guessing and other

student attributes such as gender or year of study. In an IRT

analysis, graphs are produced showing the relationship

between student ability and the probability of correct item

responses, as well as item maps depicting the calibrations of

student abilities with the above parameters. Also tables

showing ‘fit’ statistics for items and students, to be described

later.

A variety of forms of IRT have been introduced. If we wish

to look at the relationship between item difficulty and student

ability alone, we use the one-parameter logistic IRT (1PL). This

is called the Rasch model in honour of the Danish statistician

who promoted it in the 1960s. The Rasch model assesses the

probability that a student will answer an item correctly given

their conceptual ability and the item difficulty. Two-parameter

IRT (2PL) or three-parameter IRT (3PL) are also available

where further parameters such as item discrimination, item

difficulty, gender or year of study can be included. For the

purposes of this article, we are going to concentrate on 1PL or

Rasch modelling.

In Rasch modelling, the scores of students’ ability and the

values of item difficulty are standardised to make interpreta-

tion easier. After standardising the mean, student ability level is

set to 0 and the SD is set to 1. Similarly, the mean item difficulty

level is set to 0 and the SD is set to 1. Therefore, after

standardisation a student who receives a mean score of 0 has

an average ability for the items being assessed. With a score of

1.5, the student’s ability is 1.5, SDs above the mean. Similarly,

an item with a difficulty of 0 is considered an average item and

an item with a difficulty of 2 is considered to be a hard item.

In general, if a value of a given item is positive, that item is

difficult for that cohort of students and if the value is negative,

that item is easy (Nunnally & Bernstein 1994).

To standardise the student ability and item difficulty,

consider Table 10, presenting the simulated dichotomous

data for seven items on an anatomy test from seven students

showing the student ability for each student and the difficulty

level for each of the seven items. To calculate the ability of the

student, which is called �, the natural logarithm of the ratio of

the fraction correct to the fraction incorrect (or 1 – fraction

correct) for each student is taken. For example, the ability of

student 2 (�2) is calculated as follows:

�2 ¼ ln
p

1� p

� �
¼ ln

0:71

1� 0:71

� �
¼ ln 6:69 ¼ 0:89:

This indicates that the ability of student 2 is 0.89 above the

mean SD. To calculate the difficulty level of each item which is

called b, the natural log of the ratio of the fraction incorrect

(or 1 – fraction correct) to the fraction correct for each item is

calculated. For example, the difficulty of item 2 is calculated as

follows:

b2 ¼ ln
1� p

p

� �
¼ ln

1� 0:85

0:85

� �
¼ ln 0:176 ¼ �1:73:

A value of �1.73 suggests that the item is relatively easy.

This standardisation process is carried out for all students and

all items and can easily be facilitated in an Excel spreadsheet

(Table 10).

We are now in a position to estimate the probability that a

student with a specific ability will correctly answer a question

with a specific item difficulty. For 1PL, the following equation

is used to estimate the probability:

p ¼
1

1þ e�ð� � bÞ

Where p is the probability, � is the student ability and b the

item difficulty. Referring to Table 10, the ability of student 1 is

�0.28 SD below the average, and item 1, with a difficulty level

of �1.73, was answered correctly, which is below the average.

On the basis of the above formula, the probability that student

1 will answer item 1 correctly is [1/(1þ e�(�0.28�(�1.73))]¼ 0.12.

Considering student 3’s ability level and the difficulty of item 4,

the probability that the student will answer correctly item 3 is

[1/(1þ e�(0.28�(0.28))]¼ [1/(1þ e0)]¼ 0.50. This shows that if

the level of student ability and the level of item difficulty are

matched, the probability that the student will select the correct

Table 10. A simulated 7-item test of anatomy ability.

Student Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 FCa SAb (�)

1 1 0 0 0 1 0 1 0.43 �0.28

2 1 1 1 1 0 1 1 0.71 0.90

3 1 1 1 0 1 0 0 0.57 0.28

4 1 0 1 0 1 0 1 0.57 0.28

5 0 0 0 0 0 0 1 0.14 �1.82

6 1 0 1 1 1 0 0 0.57 0.28

7 1 0 0 1 1 0 0 0.43 �0.28

FCa 0.85 0.28 0.57 0.43 0.71 0.14 0.57

IDc (b) �1.73 0.90 �0.28 0.28 �0.89 1.80 �0.28

Note: aFraction correct, bstudent ability and citem difficulty.
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answer is 50%, which is equal to chance. The fundamental

aim of Rasch analysis is to create test items that match their

degree of difficulty with student ability. In simple terms,

the ‘cleverness’ of the students should be matched with

the ‘cleverness’ of the items. In order to further examine the

relationship between student ability and item difficulty, the

data in Table 11 shows the probability (p) that a student will

answer item 1, with item difficulty (b), correctly given their

ability (�) using data taken from Table 10 and using the

equation above.

Item characteristic curves

In Rasch analysis, the relationship between item difficulty and

student ability is depicted graphically in an item characteristic

curve (ICC) shown in Figure 6.

In Figure 6, dotted lines are drawn to interpret the

characteristics of item 1. There is a 50% probability that

students with an ability of �1.85 will answer this question

correctly. This implies that student with lower ability have an

equal chance of answering this question correctly. In addition,

a student with an average ability (� ¼ 0) has an 80% chance of

giving a correct answer. The implication is that this question is

too easy. It should be noted that if an item shifts the curve to

the left along the theta axis, it will be an easy item and a hard

item will shift the curve to right. Examples of ICC curves for

items taken from an examination analysis shown in Figure 8

are displayed in Figure 7. Figure 7(a) shows a difficult question

(Question 101) and Figure 7(b) shows an easy question

(Question 3). Figure 7(c) shows the ‘perfect’ question

(Question 46) in which students of average ability have a

50% chance of giving the correct answer.

Item-student maps

The distribution of students’ ability and the difficulty of each

item can also be presented on an Item–student map (ISM).

Using IRT software programmes such as Winsteps� (Linacre,

2011) item difficulty and student ability can be calculated and

displayed together. Figure 8 shows the ISM using data from a

knowledge-based test. The map is split into two sides. The left

side indicates the ability of students whereas the right side

shows the difficulty of each item. The ability of each student is

represented by ‘hash’ (#) and ‘dot’ (.), items are shown by their

item number. Item difficulty and student ability values are

transformed mathematically, using natural logarithms, into an

interval scale whose units of measurement are termed ‘logits’.

With a logit scale, differences between values can be quan-

tified and equal distances on the scale are of equal size

Figure 6. ICC for item 1 from Table 10.

Table 11. Estimates of the probability of answering the correct
answer for item 1.

Student b � p

1 �1.73 �0.28 0.81

2 �1.73 0.90 0.93

3 �1.73 0.28 0.88

4 �1.73 0.28 0.88

5 �1.73 �1.82 0.48

6 �1.73 0.28 0.88

7 �1.73 �0.28 0.81
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(Bond & Fox 2007). Higher values on the scale imply both

greater item difficulty and greater student ability. The letters of

‘M’, ‘S’ and ‘T’ represents mean, one standard deviation and

two standard deviations of item difficulty and student ability,

respectively. The mean of item difficulty is set to 0. Therefore,

for example, items 46, 18 and 28 have an item difficulty of 0,

1, and �1 respectively. A student with an ability of 0 logits

has a 50% chance of answering items 46, 60 or 69 correctly.

The same student has a greater than 50% probability of

correctly answering items less difficult, for example items 28

and 62. In addition, the same student has a less than 50%

probability of correctly answering more difficult items such

items 64 and 119.

By looking at the ISM in Figure 8 we can now interpret the

properties of the test. First, the student distribution shows that

the ability of students is above the average, whereas more than

half of the items have difficulties below the average. Second,

the students on the upper left side are ‘cleverer’ than the items

on the lower right side meaning that the items were easy and

unchallenging. Third, most students are located opposite items

to which they are well matched on the upper right and there

are no students on the lower left side. However, items 101, 40,

86 and 29 are too difficult and beyond the ability of most

students.

Overall, in this example, the students are ‘cleverer’ than

most of the items. Many items in the lower right hand quadrant

are too easy and should be examined, modified or deleted

from the test. Similarly, some items are clearly too difficult. The

advantage of Rasch analysis is that it produces a variety of data

displays encapsulating both student and item characteristics

that enable test developers to improve the psychometric

properties of items. By matching items to student ability, we

can improve the authenticity and validity of items and develop

higher quality item banks, useful for the future of computer

adapted testing.

Conclusions

Objective tests as well as OSCE stations should be the

psychometrically sound instruments used for measuring the

proficiency of students and can be of use to medical educators

interested in the actual use of these examination tests in the

future. In this Guide, we tried to simply explain how to

interpret the outcomes of psychometric values in objective

Figure 7. Examples of the ICC.
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test data. Examination tests should be standardised both

nationally and locally and we need to ensure about the

psychometric soundness of these tests. A normal question that

may be posed is to what extent our exam data measure the

student ability (to what extent the students have learned subject

matter). The interpretation of exam data using psychometric

methods is central to understand students’ competencies on a

subject matter and to identify students with low ability.

Furthermore, these methods can be employed for test validation

research. We would suggest medical teachers, especially who

are not trained in psychometric methods, practice these

methods on hypothetical data and then analyse their own real

exam data in order to improve the quality of exam data.

Summary

This Guide has explained the interpretation of post-examina-

tion interpretation of objective test data. There are a number of

psychometric methods for determining the validity and

reliability of tests. CTT enables medical educators to detect

abnormal items on a test and to identify systematic errors that

may have influenced the student ability on a test. Factor

analysis allows medical educators to reduce the irrelevant

items, and to hypothesise relationships within items and

constructs (factors) associated with student competence. We

introduced CFA and structural equation modelling to test

hypotheses about the relationship between items and

Figure 8. ISM; each ’#’ represents four students and ‘.’ represents one student.
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constructs (the underlying internal structure of the test).

Although Cronbach’s alpha is traditionally used as an estimation

of the reliability of a test, it does not assess a combination of

source of measurement error that exists in observed scores of

students on a test. Using Generalisability study, medical

educators can show the exact position of error and then isolate

it in order to estimate variance in each source of measurement

error. SPSS is used for measuring sources of measurement errors

to calculate G-coefficient. One of the limitations of CTT is that it

does not provide the opportunity to measure how students of

different ability on a particular test perform on a particular item.

IRT using Rasch modelling can address the relationship

between the item ability and student ability from a set of the

student cohort. Using IRT, medical educators will be able to

evaluate the psychometric features of existing examination tests

and to remove anomalies in items. Using IRT will also employ to

develop item banking in which turn leads to CAT.
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